Positron Source from X-rays Emitted by Plasma Betatron Motion
نویسندگان
چکیده
A new method for generating positrons has been proposed that uses betatron X-rays emitted by an electron beam in a high-K plasma wiggler. The plasma wiggler is an ion column produced by the head of the beam when the peak beam density exceeds the plasma density. The radial electric field of the beam blows out the plasma electrons transversely, creating an ion column. The focusing electric field of the ion column causes the beam electrons to execute betatron oscillations about the ion column axis. At the proper plasma density, this leads to synchrotron radiation in the 1-50 MeV range. These photons strike a thin (.5Xo), high-Z target and create electron-positron pairs. Experimental results from work conducted at the Stanford Linear Accelerator Center (SLAC), where a 28.5 GeV electron beam was used in a proof-of-principle demonstration of this scheme, were matched with a simulation model. This model was expanded to design a potential positron source, giving positron yields of 0.44 positrons/electron, a number that is close to the target goal of 1-2 positrons/electron for future positron sources.
منابع مشابه
Positron production by x rays emitted by betatron motion in a plasma wiggler.
Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad coll...
متن کاملX-ray emission from betatron motion in a plasma wiggler.
The successful utilization of an ion channel in a plasma to wiggle a 28.5-GeV electron beam to obtain broadband x-ray radiation is reported. The ion channel is induced by the electron bunch as it propagates through an underdense 1.4-meter-long lithium plasma. The quadratic density dependence of the spontaneously emitted betatron x-ray radiation and the divergence angle of approximately (1-3)x10...
متن کاملDemonstration of a Novel Positron Source Based on a Plasma Wiggler
A new method for generating positrons has been proposed that uses betatron X-rays emitted by an electron beam in a high-K plasma wiggler. The plasma wiggler is an ion column produced by the head of the beam when the peak beam density exceeds the plasma density. The radial electric field of the beam blows out the plasma electrons transversely, creating an ion column. The focusing electric field ...
متن کاملSpectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons.
X-ray betatron radiation is produced by oscillations of electrons in the intense focusing field of a laser-plasma accelerator. These hard x-rays show promise for use in femtosecond-scale time-resolved radiography of ultrafast processes. However, the spectral characteristics of betatron radiation have only been inferred from filter pack measurements. In order to achieve higher resolution spectra...
متن کاملQuantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source
X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by...
متن کامل